

DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Jean-Pierre Joly Directeur Général INES Jean-pierre.joly@cea.fr

Applications des plasmas pour les procédés industriels dans le photovoltaïque:

Utilisation pour les dépôts en surface du Silicium

22 Novembre 2014

- Eléments de contexte: les clefs du développement industriel du PV
- Les clefs du rendement de conversion dans les cellules Silicium et le rôle de la surface et de l'hydrogène
- L'apport des dépôts assistés Plasma
- > Le nitrure de silicium pour les cellules standard
- > Le Silicium amorphe pour les cellules à hétérojonctions
- Conclusions/Perspectives

Eléments de contexte: les clefs du développement industriel du PV

- Les clefs du rendement de conversion dans les cellules Silicium et le rôle de la surface et de l'hydrogène
- L'apport des dépôts assistés Plasma
- > Le nitrure de silicium pour les cellules standard
- > Le Silicium amorphe pour les cellules à hétérojonctions
- Conclusions/Perspectives

Préambule: Les ingrédients du PV

4

PV market at the inflexion point

Le silicium cristallin reste et restera assez longtemps la technologie majoritaire

4 0 0 0

2 0 0 0

Roadmap for Technology Adoption of Various Incumbent and Next-generation PV Technologies

c-Si

TCO

(CZ, n-type)

Exemples de cellules avancées: IBC and HJT

DE LA RECHERCHE À L'INDUSTRIE

		2007	2010	2015	2020
Turn-key price large systems (€/Wp)		5	2,5	2	1,5
PV electricity generation	on cost in Southern EU (€/kWh)	0.30	0.13	0.10	0.07
Typical PV module	Crystalline silicon	13-18%	15-20%	16-21%	18-23%
efficiency range (%)	Thin films	5-11%	6-12%	8-14%	10-16%
	Concentrators	20%	20-25%	25-30%	30-35%
Invertei	r lifetime (years)	10	15	20	>25
Cost of PV + small-scale storage (€/kWh) in Southern EU (grid-connected)			0.35	0.22	<0.15
Energy pay-back time (years)		2-3	1-2	1	0.5

ETAT DE L'ART DES MEILLEURES CELLULES

Best Research-Cell Efficiencies

http://www.nrel.gov/ncpv/

Cea

Les limites physiques du rendement pour une seule jonction

Single junction

- Eléments de contexte: les clefs du développement industriel du PV
- Les clefs du rendement de conversion dans les cellules Silicium et le rôle de la surface et de l'hydrogène
- L'apport des dépôts assistés Plasma
- > Le nitrure de silicium pour les cellules standard
- > Le Silicium amorphe pour les cellules à hétérojonctions
- Conclusions/Perspectives

DE LA RECHERCHE À L'INDUSTRI

Les causes résiduelles de perte

Le rôle déterminant de la recombinaison de surface

-@

La recombinaison non-radiatives des porteurs

Toute rupture de la périodicité du réseau peut induire un piége avec un niveau énergétique inter-bande: modèle de Schockley-Read-Hall: L'efficacité du piège dépend de son niveau et de sa section efficace

Taux de recombinaison des porteurs

$$U_{SRH} = \frac{(pn - n_i^2)}{\tau_{n0} \left[p + N_V \exp\left(\frac{E_V - E_t}{kT}\right) \right] + \tau_{p0} \left[n + N_C \exp\left(\frac{E_t - E_C}{kT}\right) \right]}$$

N_t: densité de pièges (défauts)

Durée de vie des porteurs par recombinaison

$$\tau_{n0} = \left(\sigma_n v_{th} N_t\right)^{-1}$$

$$\tau_{p0} = \left(\sigma_p v_{th} N_t\right)^{-1}$$

Vitesse de recombinaison de surface

 $S_{eff} = (1/\tau_{eff} - 1/\tau_b) \cdot W/2$

DE LA RECHERCHE À L'INDUSTRI

La nature des pièges de surface

L'existence d'une liaison Si-O ou Si-H annihile l'effet négatif: on parle de « passivation des défauts de surface »

Cea

- L'hydrogène présent à haute dose dans les couches PECVD est extrêmement mobile sous ses formes monoatomiques (H⁰, H⁺,...) dans les silicium amorphe, cristallin et dans le nitrure de silicium
- Il vient saturer les liaisons pendantes dans les couches de surface (a-Si(H), SiNx(H)), dans le silicium et à la surface du Silicium

 $H+*-Si \rightarrow H-Si$

 La liaison Si-H peut se rompre par activation thermique ou photoniques et libérer des espèces monoatomiques qui peuvent aller occuper d'autres sites ou se recombiner pour former de l'hydrogène moléculaire

$$H+H-Si \rightarrow H_2(g) + *-Si$$

- Eléments de contexte: les clefs du développement industriel du PV
- Les clefs du rendement de conversion dans les cellules Silicium et le rôle de la surface et de l'hydrogène

L'apport des dépôts assistés Plasma

- > Le nitrure de silicium pour les cellules standard
- > Le Silicium amorphe pour les cellules à hétérojonctions
- Conclusions/Perspectives

Et le rôle du plasma dans tout cela?

Deux avantages majeurs et liés pour les dépôts chimiques assistés par plasma:

- Dépôts possibles à très basse température avec une vitesse de dépôt significative
- Production d'hydrogène atomique mobile

Les types de réacteurs et les conditions

DE LA RECHERCHE À L'INDUSTRI

Couplage capacitif classique (usuel)

Post-décharge (R&D)

LF	RF	VHF
400 kHz	13,56 MHz	Jusqu'à 60 MHz
production	production	R&D

cea

Les chimies associées:

SiH₄, NH₃ et H₂ pour les nitrures

SiH₄, H₂ pour le silicium amorphe hydrogéné (avec ajouts de PH₃ et B_2H_6 pour le dopage)

Les mécanismes réactionnels:

$$SiH_4 + NH_3(or \cdot N_2) \xrightarrow{200-400^{\circ}C} Si_x N_y H_z + H_2$$

$$SiH_4 \Rightarrow Si_xH_z + H_2$$

 $\operatorname{SiH}_4 + e \rightarrow \operatorname{SiH}_2$, SiH_2 , SiH_3 , Si_1 , H + e, $e + \operatorname{SiH}_4 \rightarrow \operatorname{SiH}_m^+ + (4-m)H + e + e$ m = 1, 2, 3

 $NH_3 + e \rightarrow NH_2$, HN, N, H + e.

 $Si-H + N-H \rightarrow Si-N + H_2^{\nearrow}$ $Si-H + Si-H \rightarrow Si-Si + H_2^{\nearrow}$

- Eléments de contexte: les clefs du développement industriel du PV
- Les clefs du rendement de conversion dans les cellules Silicium et le rôle de la surface et de l'hydrogène
- L'apport des dépôts assistés Plasma

> Le nitrure de silicium pour les cellules standard

- > Le Silicium amorphe pour les cellules à hétérojonctions
- Conclusions/Perspectives

La couche SiN(H) déposée par PECVD =

Le standard en substitut des couches TiO₂ à partir des années 90

Longue optimisation des paramètres de dépôt

85% du marché PV

Architecture et process d'une cellule standardes

Homojunction

La fonction optique du nitrure se Silicium Couche anti-reflet

Les propriétés optiques en fonction du rapport SiH₄/SiH₄+NH₃

Vary gas flow ratio

Indice optique

Coefficient d'extinction (absorption)

Wright, D.N., E.S. Marstein, and A. Holt, EFFECT OF ANNEALING ON PECVD SILICON NITRIDE FILMS in 21st European Photovoltaic Solar Energy Conference and Exhibition. 2006. Dresden, Germany.

➔ Faible taux d'ammoniac et donc d'azote nécessaire pour un indice proche de 2 et une faible absorption dans l'UV Cea

la vitesse de croissance augmente avec la puissance et la concentration en NH3, mais la puissance ne joue pas sur l'indice

L'hydrogène en forte concentration est lié au Silicium ou à l'azote dans la couche

L'hydrogène exo-diffuse après recuit Haute température (800°C)

Le rôle de passivation de surface

Relative Levels of Surface Passivation

Emitter Saturation Current Density, Joe (fA/cm^2)

DE LA RECHERCHE À L'INDUSTRIE

Le rôle de passivation de surface

Profils de concentration d'hydrogène issu de la couche de surface SiNx(H) déposé par PECVD

Figure 1. Calculated dynamic profiles of H resulting from the nitridation step.

Figure 2. Calculated dynamic profiles of H in an RTP anneal.

Saturation des positions disponibles:

- Liaisons pendantes aux défauts de structure
- Complexes accepteurs-Hydrogène (ex B-H)

DE LA RECHERCHE À L'INDUSTRIE

La meilleure passivation pour les couches riches en Silicium et en Hydrogène

cea

NTNU Susanne Helland
Norwegian University of
Science and Technology

Les hautes fréquences favorisent la densité d'hydrogène et de liaisons SiH (moins de bombardement)

SiNx (Nitride)

	Dep.	Refr.	Dep. Rate	Refr. Index	Film Stress	BHF Etch
	rate	Index	Uniformity	Uniformity		rate
↑ SiH₄ flow	\uparrow	${\longrightarrow}$			$\downarrow\downarrow$ (more compr.)	
↑ NH₃:SiH₄ ratio	\rightarrow	\downarrow		$\uparrow\uparrow$	\uparrow	$\uparrow\uparrow$
↑ 13MHz power	$\uparrow\uparrow$	\rightarrow	$\downarrow \downarrow$	$\downarrow \downarrow$	\downarrow	
↑ pressure	${\leftarrow}$		$\uparrow\uparrow$	$\uparrow\uparrow$	↑↑ (more tensile)	$\uparrow\uparrow$
↑ temperature	\rightarrow	↓?			\uparrow	$\downarrow \downarrow \downarrow$

Exemple de réacteur moderne en production

4000 wafers/heure 13,56 MHz

- Eléments de contexte: les clefs du développement industriel du PV
- Les clefs du rendement de conversion dans les cellules Silicium et le rôle de la surface et de l'hydrogène
- L'apport des dépôts assistés Plasma
- > Le nitrure de silicium pour les cellules standard

> Le Silicium amorphe pour les cellules à hétérojonctions

Conclusions/Perspectives

DE LA RECHERCHE À L'INDUSTRIE

Le silicium amorphe hydrogéné: La meilleure passivation à ce jour

Ollibet

A poussé au développement des cellules dites à hétérojonction

La couche de a-Si(H) dopée p+ sert d'émetteur, celle dopée n+ de base et les couches ultrafines de a-Si intrinsèques (non dopées) de couches de passivation

La cellule record sur Silicium

Open-circuit voltage (Voc)*9	0.740 V
Short circuit current (Isc)*12	6.01 A
Short circuit current density (Jsc)*12	41.8 mA/cm ²
Fill factor (FF)*13	0.827
Cell conversion efficiency	25.6%
Cell area ^{*3}	143.7 cm ²

Le rôle Clef des interfaces et des dépôts assistés Plasma

Un process Basse température et qui doit le rester

Eviter la croissance épitaxiale du Silicium amorphe en phase solide

le Wolf & Kondo, Appl. Phys. Lett. 90 (2007) 042111

finding the optimal a-Si:H emitter thickness

Confirmé par les rendements de conversion maximum

Mater. Res. Soc. Symp. Proc. Vol. 1066 © 2008 Materials Research Society Michio Kondo¹, Stefaan De Wolf^{1,2}, and Hiroyuki Fujiwara¹

Sensibilité de la recombinaison à l'épaisseur et au dopage des couches

DE LA RECHERCHE À L'INDUSTRIE

Sensibilité de la recombinaison à la température et aux post-recuits, ainsi qu'à la préparation de surface

Ollibet

PROCESS Flow

Wet cleaning +

a-Si:H 50 nm Si

a-Si:H 50 nm

WET process	Voc implied	Tau eff	Seff
Clean A	725	900	12
Clean B	735	1100	8
Clean C	745	1150	6 cm/s

With the same passivation layers, the clean quality has a huge impact on final passivation quality

Good uniformity, edge effect should still be reduced

INES results

DE LA RECHERCHE À L'INDUSTRI

Vue des interfaces par microscopie électronique

cea

Pas d'avantage à l'utilisation des hautes fréquences

Jan-Willem Alexander Schüttauf

DE LA RECHERCHE À L'INDUSTR

Réacteurs industriels

MEYER BURGER

	(5poin	its) average thickness per wafer [nm]					
	1	2	3	4	5	6	7
A	10,0	10,4	10,0	9,9	9,5	9,5	9,3
в	10,8	10,6	10,5	9,9	10,0	9,9	9,4
с	10,4	10,5	10,1	9,6	9,6	9,6	9,5
D	10,2	9,9	9,8	9,3	9,4	9,4	9,1
E	9,9	9,8	9,6	9,3	9,2	9,3	9,2
F	10,4	10,1	9,6	9,4	9,2	9,2	9,3
G	10,8	10,5	10,0	9,8	9,5	9,5	9,4
н	10,7	10,6	10,0	9,8	9,7	9,4	9,3
1	Scale	3	8	13	18	23	28
	Total	AVG 9,8		UNIF 8,5%		STDEV 0,5	
	-	AVG		UNIF		STDEV	
Center area		9,7		6,8%		0,4	

(5points) average E_g [eV]

A		1,82	1,84	1,83	1,82	1,82	1,82	1,81
в		1,84	1,83	1,84	1,83	1,83	1,83	1,82
с		1,83	1,84	1,83	1,83	1,82	1,82	1,85
D		1,84	1,84	1,83	1,84	1,82	1,83	1,84
E		1,82	1,84	1,83	1,84	1,81	1,82	1,85
F		1,84	1,84	1,82	1,84	1,82	1,82	1,85
G		1,84	1,84	1,83	1,83	1,82	1,83	1,85
н		1,83	1,84	1,83	1,83	1,83	1,83	1,83
		Scale	1.5	1.6	17	1.0	1.0	2.0
Total		AVG	2,0	UNIF	1,0	STDEV	2,0	
		1,83		1,0%		0,01		
			AVG		UNIF		STDEV	
Center area		1,83		0,7% 0,01				

DE LA RECHERCHE À L'INDUST

Cez

PROCESS SIMPLE ET BON MARCHÉ

CZ: 18.5% MC: 16.8 – 17%	18.5 – 19% 17 – 18%	19-20% 18-19%	20-21% 19-20%	21 ~ 25% (n)
Standard process	Selective Emitter	MWT standard	PERC	HJT process
Texture	Texture	Laserdrilling	Texture	Texture
Doping / Diffusion	Doping / Diffusion	Texture	Doping / Diffusion	a-Si front/ rear side
Edge Isolation	Additional ???	Doping/Diffusion	Edge Isolation	TCO / metal rear contact
PSG Etch	Additional ???	RS emitter removal	PSG Etch	Print front Side
AR Coating	Additional ???	PSG etching	SiNx Capping layer	Print BS
Print Rear Side	Additional ???	FS SiNx	AIOx passivation layer	Test & Sort
Print Front Side Firing	Edge Isolation	Screen printing RS	AR Coating Laser contact opening	
Test & Sort	AR Coating	Contact firing	Print Rear Side Print Front Side	n-type C-Gi
	Print Rear Side Print Front Side	Laser isolation BS	Firing Test & Sort	
	Firing Test & Sort			49

- Les dépôts chimiques en phase vapeur assistés par plasma sont de devenus une clef majeure des technologies photovoltaïques Silicium que ce soit pour les technologies standard (SiN:H) ou pour les technologies les plus avancées (HJT avec a-Si:H)
- ✓ Il reste des marges de progression:
 - Architectures de réacteurs
 - Haute fréquence
 - Réacteurs uniformes de très grande taille (augmentation de la productivité)
 - Compréhension fine des effets physiques

On the back-side of p-type Silicon

cea

DE LA RECHERCHE À L'INDUSTRI

Merci de votre attention