

Modélisation Cinétique : Applications aux Plasmas Froids Hors-Equilibre

Laurent Garrigues

Laboratoire Plasma et Conversion d'Energie – LAPLACE Groupe de Recherche, Energétique, Plasmas, Hors-Equilibre - GREPHE Université de Toulouse, CNRS-UPS-INPT Bâtiment 3R2, 118 Route de Narbonne 31062 Toulouse Cedex 09, France

laurent.garrigues@laplace.univ-tlse.fr

Laplace

Plan

- Approche cinétique
- Techniques de parallélisation
- Dérives en champs E et B croisés
- Décharge Penning
- Le propulseur de Hall
- Conclusions & remerciements

Laplace

2

Modèle cinétique

Étude des plasmas faiblement collisionnels

Modèle PIC électrostatique

Équation de Boltzmann avec collisions

$$\frac{\partial}{\partial t} f_s + \mathbf{v} \frac{\partial}{\partial \mathbf{r}} f_s + \mathbf{a} \frac{\partial}{\partial \mathbf{v}} f_s = \left\{ \frac{\partial}{\partial t} f_s \right\}_{coll}$$
$$f_s \equiv f_s(\mathbf{r}, \mathbf{v}, t)$$
$$\mathbf{a} = q_s \left(\mathbf{E} + \mathbf{v} \times \mathbf{B}_{ext} \right) / m_s$$

Équation de Poisson

 $\nabla [\boldsymbol{\varepsilon} \mathbf{E}(\mathbf{r},t)] = \rho(\mathbf{r},t)$

$$\rho(\mathbf{r},t) = \sum_{s} q_{s} \int f_{s}(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$

Principe des simulations PIC

 Échantillonner la fonction de distribution f_s à l'aide d'un nombre fini p de particules (macro-particules)

$$f_s(\mathbf{r}, \mathbf{v}, t) = \sum_p f_{s,p}(\mathbf{r}, \mathbf{v}, t)$$

- Faire évoluer l'ensemble de ces particules définies par leur position et vitesse dans le champ qu'elles créent et modifient (avec l'action d'un champ magnétique extérieur), tout en faisant des collisions
- Introduction d'une grille temporelle (et contrainte associée)
- Introduction d'une grille spatiale (et contrainte associée)

"Cycle" d'un modèle PIC

Laplace

Equations du mouvement des particules

Equations de Newton (non relativiste) :

Mouvement des particules

7

Laplace

$$\frac{d}{dt}\mathbf{r}_{s,p} = \mathbf{v}_{s,p} \qquad m_s \frac{d}{dt} \mathbf{v}_{s,p} = \mathbf{F} = q_s \left(\mathbf{E} + \mathbf{v}_{s,p} \times \mathbf{B}\right)$$

- Echantillonnage : millions de particules pendant des milliers de pas de temps
- Schéma « Leap-Frog » saute-mouton : stockage uniquement des grandeurs à l'instant précédent

$$m_{s} \frac{\mathbf{v}_{s,p}^{n+1/2} - \mathbf{v}_{s,p}^{n-1/2}}{\Delta t} = q_{s} \left(\mathbf{E}^{n} + \frac{\mathbf{v}_{s,p}^{n+1/2} + \mathbf{v}_{s,p}^{n-1/2}}{2} \times \mathbf{B}(\mathbf{r}^{n}) \right) \qquad \qquad \mathbf{v}_{s,p}^{n-1/2} \quad \mathbf{r}_{s,p}^{n} \quad \mathbf{v}_{s,p}^{n+1/2} \quad \mathbf{r}_{s,p}^{n+1} \quad \mathbf{v}_{s,p}^{n+3/2} \quad \mathbf{t}$$

$$\frac{\mathbf{r}_{s,p}^{n+1} - \mathbf{r}_{s,p}^{n}}{\Delta t} = \mathbf{v}_{s,p}^{n+1/2} \qquad \qquad \mathbf{E}^{n} \quad \mathbf{E}^{n+1} \\ \mathbf{B}^{n} \quad \mathbf{B}^{n+1} \quad \mathbf{B}^{n+1}$$

Traitement des collisions en volume

Méthode statistique : Monte Carlo

8

- Calculer le nombre de particules qui font des collisions
- Calculer des fréquences de collision (élastique, excitation et ionisation) à partir des jeux de sections efficaces, de la densité de gaz et de l'énergie des particules incidentes
- Calculer les nouvelles composantes de vitesse, création/disparition de particules supplémentaires (ionisation, attachement)

Assignation des charges sur la grille

 $Q_{i,j,p} = (1 - w_1)(1 - w_2)$ $Q_{i+1,j,p} = w_1(1 - w_2)$ $Q_{i,j+1,p} = (1 - w_1)w_2$ $Q_{i+1,j+1,p} = w_1w_2$

$$\rho_{i,j} = \sum_{s} q_s \sum_{p} Q_{i,j,p}$$

Calcul de la densité De charges sur la grille

Equation de Poisson

• Equations de Poisson $\nabla [\varepsilon \mathbf{E}(\mathbf{r},t)] = \rho(\mathbf{r},t)$

$$\rho(\mathbf{r},t) = \sum_{s} q_{s} \int f_{s}(\mathbf{r},\mathbf{v},t) d\mathbf{v}$$

- Champ électrique dérive d'un potentiel $\mathbf{E}(\mathbf{r},t) = -\nabla \cdot [\Phi(\mathbf{r},t)]$
- Discrétisation centrée (cas du vide)

$$\frac{\Phi_{i-1,j}^{n} - 2\Phi_{i,j}^{n} + \Phi_{i+1,j}^{n}}{\Delta x^{2}} + \frac{\Phi_{i,j-1}^{n} - 2\Phi_{i,j}^{n} + \Phi_{i,j+1}^{n}}{\Delta y^{2}} = -\frac{\rho_{i,j}^{n}}{\varepsilon_{0}}$$

• Résolution : inversion de matrice, méthode itérative, TFR, etc.

Résolution de l'équation De Poisson

10

Laplace

Contraintes

Contraintes sur le pas de temps

$$\Delta t = \min\left[\frac{0.2}{\omega_{p,s}}, \frac{0.2}{\omega_{c,s}}, \frac{\Delta x}{v_{s,th}}, \frac{1}{v_{\text{coll}}^{\text{max}}}\right]$$

Contrainte sur le pas en espace

$$\Delta x < \lambda_{d,s} = \sqrt{\frac{\varepsilon_0 k_B T_s}{q_s^2 n_s}}$$

Contrainte sur la statistique – bruit numérique

$$N_{s,p} > 100' N_{cell}$$

 $\omega_{p,s} = \sqrt{\frac{q_s^2 n_s}{m_s \varepsilon_0}} \qquad \mathbf{v}_{s,th} = \sqrt{\frac{8k_B T_s}{\pi m_s}}$ $\omega_{c,s} = \frac{q_s B}{m_s}$

Illustration

12

Laplace

- fortes contraintes aux fortes densités
- Iever les contraintes ?

Méthode Scaling

$$\omega_{p,s} = \sqrt{\frac{q_s^2 n_s}{m_s \gamma \varepsilon_0}} \qquad \qquad \lambda_{d,s} = \sqrt{\frac{\gamma \varepsilon_0 k_B T_s}{q_s^2 n_s}}$$

- Augmentation de la permittivité ($\gamma \sim 100-1000$)
- Lever les contraintes sur la fréquence plasma et long. de Debye

13

Laplace

 Limite : épaisseur des gaines, gaines collisionnelles et magnétisées

Méthode Implicite

14

Laplace

- Etudier des phénomènes lents (devant la fréquence plasma électronique) et dont la longueur d'onde est supérieure à la longueur de Debye
- Utilisation d'un schéma qui amortit ces ondes
- Discrétisation du mouvement des particules différente

$$m_{s} \frac{\mathbf{v}_{p,s}^{n+1/2} - \mathbf{v}_{p,s}^{n-1/2}}{\Delta t} = q_{s} \left(\mathbf{E}^{n+1} + \frac{\mathbf{v}_{p,s}^{n+1/2} + \mathbf{v}_{p,s}^{n-1/2}}{2} \times \mathbf{B}(\mathbf{r}^{n}) \right)$$

Pas en espace x 10-20, Pas de temps x 10-20

Bibliographie

15

Laplace

- Plasma Physics via Computer Simulation, C.K. Birdsall and A.B. Langdon, McGraw-Hill, 1985.
- Computer Simulation using Particles, R.W. Hockney and J.W. Eastwood, McGraw-Hill, 1981.
- Computer Plasma Physics with Applications to fusion and Astrophysics, T. Tajima, Addison-Wesley Publishing Company, 1989.
- Particle Simulation of Plasmas, J.M. Dawson, *Review of Modern Physics* 55, 403 (1983).
- Particle Simulation of Plasmas: Review and Advances, J. Verboncoeur, *Plasma Physics and Controlled Fusion* 47, A231 (2005).
- Particle Simulations for Space Weather, G. Lapenta, *Journal of Computational Physics* 231, 795 (2011).

Le calcul parallèle, c'est quoi ?

- Utiliser plusieurs processeurs pour effectuer un calcul
- Calculs plus rapides
 (diviser par N proc. en théorie)
- Difficultés :
 - Partage des tâches
 - Gestion des échanges d'information

- Outils de parallélisation programmation
 - Utiliser l'architecture parallèle du processeur
 - OpenMP : mémoire partagée
 - MPI : mémoire distribuée

Main Memory (4GB)

16

Laplace

Décomposition de domaine

1 Processeur

1 Processeur 4 cœurs

Décomposition en particules

1 Processeur

18

Laplace

Moyens de calcul

Clusters LAPLACE (188 processeurs)

Supercalculateur EOS Université Paul Sabatier (12200 processeurs)

EOS - 183ème place au TOP500 Juin 2014

19 Laplace

Bibliographie

20

- The Sourcebook of Parallel Computing, edited by J. Dongarra, I. Foster, G. C. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White, Morgan Kaufman publishers (2002).
- Parallel Computing: Architectures, Algorithms, and Applications, edited by C. Bischof, M. Brückner, P. Gibbon, G. R. Joubert, T. Lippert, B. Mohr, and F. Peters, IOP Press (2008).
- Parallel Programming, B. Wilkinson and M. Allen, Prentice-Hall, Inc. (1999).
- Handbook of Parallel Computing: Models, Algorithms, and Applications, edited by S. Rajasekaran and J. Reif, Taylor & Francis Group, LLC (2008).
- Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, edited by M. Parashar and X. Li, Wiley & Sons (2010).

Dérives en champs E et B croisés

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

Paramètre de Hall

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

Décharge Penning ?

F. M. Penning, Physica 3, 873 (1936)

Caractéristiques

F. M. Penning

1894-1953

- B : [0.01 0.1] T
- Pression : [10⁻⁴ 10⁻⁶] Pa
- Tension : [0.1 1] kV

- Applications
 - Faisceau d'ions
 - Jauge de pression

23

Décharge Penning - Culatron

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

24

Modélisation "2.5" D

Résultats moyennés dans le temps

Densité ionique fonction du temps

t = 5.0 μs

27 Laplace

Rotation du plasma

C. Rebont et al., Phys. Rev. Lett. 106, 225006 (2011)

Instablités de Simon-Hoh

Y. Sakawa et al., Phys. Rev. Lett. 69, 85 (1992)

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

Bibliographie

29

Laplace

- J. R. Roth, Industrial Plasma Engineering, Principles (IOP Publishing 1995).
- F. M. Penning, "Glow Discharge at Low Pressure Between Coaxial Cylinders in an Axial Magnetic Field", *Physica* **3**, 873 (1936).
- F. M. Penning, "A New Manometer for Low Gas Pressures Between 10⁻³ and 10⁻⁵ Torr", *Physica* 4, 71 (1937).
- J. P. Boeuf and B. Chaudhury, "Rotating Instability in Low-Temperature Magnetized Plasmas", *Phys. Rev. Lett.* **111**, 155005 (2013).
- C. Rebont, N. Claire, Th. Pierre, and F. Doveil, "Ion Velocity Distribution Function Investigated Inside an Unstable Magnetized Plasma Exhibiting a Rotating Nonlinear Structure", *Phys. Rev. Lett.* **106**, 225006 (2011).
- Y. Sakawa, C. Joshi, P. K. Kaw, V. K. Jain, T. W. Johnston, F. F. Chen, and J. M. Dawson, "Nonlinear Evolution of the Modified Simon-Hoh Instability via a Cascade of Sideband Instabilities in a Weak Beam Plasma System", *Phys. Rev. Lett.* 69, 85 (1992).
- N. Brenning, D. Lundin, T. Minea, C. Costin and C. Vitelaru, "Spokes and Charged Particle Transport in HiPIMS Magnetrons", *J. Phys. D: Appl. Phys.* **46**, 084005 (2013).
- C. L. Ellison, Y. Raitses, and N. J. Fisch, "Cross-Field Electron Transport Induced by a Rotating Spoke in a Cylindrical Hall Thruster", *Phys. Plasmas* **19**, 013503 (2012).

Propulseur de Hall ?

Maintenir un satellite sur une orbite géostationnaire

Propulseur chimique

Brule de l'Hydrazine (N_2-H_4) vitesse d'éjection thermique

Propulseur de Hall

accélérer des ions en appliquant une tension de 100s de Volts

En fonctionnement

31 Laplace

Comment ça marche ?

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

Trajectoires électroniques

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

33

Modèle 2D - scaling

 $\gamma = 80$

- Domaine cartésien : x = 4 cm, y = 2.1 cm
- scaling
 - $\gamma = 1$ $\Delta t = 3.5 \times 10^{-12} \text{ s}$
 - $\Delta x = 2.5 \times 10^{-5} \text{ m}$

 $\Delta t = 3 \times 10^{-11}$ s (qlq jours 16 proc/mill. Part) $\Delta x = 2 \times 10^{-4}$ m (200 x 100 cellules)

- Transport des atomes : équation fluide 1D
- Conditions aux limites pour le potentiel :

Tension appliquée x, conditions périodiques en y

Champ magnétique localisé

- En présence d'un champ magnétique localisé (barrière)
 - Décroissance de la conductivité électronique localement σ
 - Génération un champ électrique à l'intérieur du plasma E = j/ σ

35

- Champ électrique : chauffer les électrons et accélérer les ions
- « moteur » sans grille accélératrice

champ électrique calculé vs mesuré

300 V, 5 mg/s de xénon

S. Mazouffre and G. Bourgeois, Plasma Sources Sci. Technol. 19, 065018 (2010)

Variation temporelle du courant

- Mode de respiration des atomes
- Observé expérimentalement

Mobilité

Phénomène responsable du transport ?

12ème Journées Réseau Plasmas Froids – 20-23 Octobre 2014, La Rochelle

 $t = [-5:0] \mu s$

Onde de dérive suivant y (1/2)

39 Laplace

Onde de dérive suivant y (2/2)

- Instabilité en y : courte longueur d'onde (~ mm)
- Mode dominant m = 13 ($k_v = 4000 \text{ rad.s}^{-1}$), f ~ MHz
- Observée expérimentalement (diffusion collective)

S. Tsikata et al., Phys. Plasmas 16, 033506 (2009)

Description théorique - S. P. Gary and J. J. Sanderson, *Plasma Phys.* 4, 739 (1970).

 $t = -3 \mu s$

Bibliographie

41

- J. C. Adam, J. P. Boeuf, N. Dubuit, M. Dudeck, L. Garrigues, D. Gresillon, A. Heron, G. J. M. Hagelaar, V. Kulaev, N. Lemoine, S. Mazouffre, J. Perez-Luna, V. Pisarev, and S. Tsikata, "Physics, simulation and diagnostics of Hall effect thrusters", *Plasma Phys. Control. Fusion* **50**, 124041 (2008).
- J. P. Boeuf and L. Garrigues, "Low frequency oscillations in a stationary plasma thruster", J. Appl. Phys. 84, 3541 (1998).
- L. Garrigues and P. Coche, "Electric Propulsion: Comparisons between different concepts", *Plasma Phys. Control. Fusion* **53**, 124011 (2011).
- S. Mazouffre and G. Bourgeois, "Spatio-temporal characteristics of ion velocity in a Hall thruster discharge", *Plasma Sources Sci. Technol.* **19**, 065018 (2010).
- S. Tsikata, C. Honore, V. Pisarev, and D. Gresillon, "Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering", *Phys. Plasmas* **16**, 033506 (2009).
- S. P. Gary and J. J. Sanderson, "Longitudinal waves in a perpendicular collisionless plasma shock", *Plasma Phys.* **4**, 739 (1970).
- P. Coche and L. Garrigues, "A Two-dimensional (azimuthal-axial) Particle-In-Cell model of a Hall Thruster", *Physics of Plasmas* **21**, 023503 (2014).

Conclusions & remerciements

42

- Utilisation des modèles PIC + parallélisation permet de mettre en évidence des phénomènes complexes tels que les instabilités dans les plasmas – dérive ExB ou ∇PxB fermée
- Sources à dérive ExB bloquée par les parois (PEGASES, injecteur de neutres pour ITER)
- Remerciements
 - Groupement d'Intérêt Scientifique Propulsion par Plasma
 - Centre de calcul HPC CALMIP de l'Université Paul Sabatier -Programme 2013-P1125

