

Science des Procédés Céramiques et de Traitements de Surface

Torche plasma micro-ondes à pression atmosphérique : application au dépôt d'oxydes

Christelle Dublanche-Tixier, Yoan Gazal, Pascal Tristant, Christophe Chazelas, Cédric Jaoul, Christophe Le Niniven SPCTS, UMR CNRS 7315, Université de Limoges

12 ^{èmes} Journées du Réseau Plasmas froids 20-23 octobre 2014 – La Rochelle

Introduction

Vitesses de dépôt : 10 à 1000 nm/min

Introduction

Les sources micro-ondes

pas d'électrodes

micro-ondes guidées le long du dispositif pour transmettre leur énergie aux électrons du gaz plasmagène.

Introduction

Torches micro-ondes

Semi-métalliques

Métalliques

Plasma initié à l'intersection tube de quartz /guide rectangulaire

Microwave Plasma Torch (MPT)

Jin et al., Spectrochemica Acta Part B, 1991 M. Moisan et al., Plasma Sources Sci. Technol., 1994

Torche à Injection axiale (TIA)

Caractéristiques de la TIA

Dépôt de SiO₂ Dépôt de TiO₂ Co-dépôt TiO₂/SiO₂ Conclusions et perspectives

La TIA à l'air

Influence sur les propriétés du plasma

7

J. Jonkers et al. Plasma Sources Sci. Technol., 1999

Les différentes zones de la TIA

8

Gradients de densité et de température électroniques

J. Jonkers et al. Plasma Sources Sci. Technol. 6 (1997) 533-539

J. Jonkers et al. Plasma Sources Sci. Technol. 8 (1999) 49-57

La TIA parmi les autres sources à pression atmosphérique

MPJ

Magnetron

S.R. Wylie *et al.*, Journal of Materials Processing Technology 2004 M. Jasinski et al., Journal of Physics D : Appl. Phys., 2002

La TIA parmi les autres sources à pression atmosphérique

Large gamme de paramètres opératoires :

Source	Gamme de puissance	Gamme de débit (slm)	Température des lourds (K)
Torches à plasma d'arc	10 - 100 kW	10 - 150	8000-14000
DBD	quelques 100 W	5 - 40	<700
RF	quelques 100 W	50 - 90	<800
Micro-ondes	100 - 5000 W	2 – 30	1000-10000
TIA	150 - 3000 W	1-15	300 - 4500

Source	Gaz plasma.	Applications	Equipe
TIA	Ar/He	Modélisation 1D hydrodynamique et électromagnétique	O. Leroy, France
TIA	Ar/He	Modélisation électromagnétique	N. Ikhlef, Algérie
TIAGO	Ar/He	Diagnostics plasma par sonde de Langmuir	M.A. Razzak, Japon
TIA	Ar/Ar+H ₂ O	Production de H ₂ et modélisation 2D	J. Henriques, Portugal
TIAGO modifiée	N ₂ , O ₂ , CO ₂ , CH ₄	Synthèse de nanoparticules de TiO ₂	H.C. Hong, Corée du Sud
TIA	O ₂	Production/recyclage de combustibles gazeux	T.S. Kim, Corée du Sud
TIA modifiée	Ar/He	Etude hydrodynamique	S. Takamura, Japon
TIA	Ar	Synthèse de nanotubes de carbone, de nanoparticules d'oxyde de fer et modélisation	L. Zajickova, Rép. Tchèque
TIA	Ar/He/H ₂	Spectroscopie analytique	A. Gamero, Espagne
TIA	Ar/He	Modélisation hydrodynamique	L. Alves, Portugal
TIA	Ar	Etude électromagnétique et diagnostics plasma	JJAM. Van der Mullen, Pays-Bas
TIA	Ar/He	Etude hydrodynamique expérimentale	S. Kanazawa, Japon ₁₂

TIA utilisée pour : - de la modélisation électromagnétique et hydrodynamique

- du diagnostic plasma
- de la spectroscopie analytique
- de la synthèse de nanoparticules

Set la PECVD ?

♦ collaboration LPGP*- SPCTS

*C. Boisse-Laporte, P. Leprince, O. Leroy

Caractéristiques de la TIA Dépôt de SiO₂

Dépôt de TiO₂ Co-dépôt TiO₂/SiO₂ Conclusions et perspectives

Mise en œuvre du procédé de dépôt

- Dépôt à l'air mais utilisation d'un réacteur métallique
- Porte-substrat mobile pour pouvoir traiter quelques cm²

15

♦ Application aux dépôts de SiO₂ à partir de TMS et HMDSO

*Collaboration avec O. Leroy, LPGP, Université de Paris Sud

Procédés de dépôt de couches minces SiO_x à pression atmosphérique

Sources	Fréquences	Précurseurs	Dépôts	Références
DBD	BF	HMDSO TEOS	SiO _x	Massines <i>et al.</i> 2005
		HMDSN	SiO _x C _y	Opalinska <i>et al.</i> 2002
			SiO_xN_y	Ryzmura <i>et al.</i> 2004
Couronne	BF	TMS, TEOS	$\rm SiO_xH_y$	Thyne <i>et al.</i> 1998
Line Plasma	BF	HMDSO	SiO _x	Zhu <i>et al.</i> 2005
Torche capacitive	BF	HMDSO	$\sim SiO_x$	Kuwabara et al. 2006
АРРЈ	RF	HMDSO	SiO _x H _y , SiO _x	Babayan <i>et al.</i> 2001
				N.D. Boscher <i>et al.</i> 2010
AtomFlo	RF	HMDSO	SiO _x	Nowling <i>et al</i> . 2005
CYRANNUS I	MW	HMDSO	SiO _x	Pfuch <i>et al.</i> 2004
		TEOS	SiO _x	Hopfe <i>et al.</i> 2005
Cavité résonante	MW	HMDSO	SiOx	Belmonte <i>et al.</i> 2011

Proportion de gaz précurseur faible : 0,0001% à 1% pour des couches inorganiques

Dépôt obtenu sur substrat statique

Substrats:

- Silicium (100), 30 x 30
 mm², épaisseur : 525 μm.
- Nettoyage acétone puis éthanol

Temps de dépôt = 15 minutes

Schercheite Scherc

➡ Etude paramétrique

Etude paramétrique

Paramètres	Effet de l'augmentation de ce		
	paramètre		
Puissance	Masse déposée		
micro-onde	Présence de poudre 🛉		
Distance	Masse déposée 🛛 =		
Torche- substrat	Présence de poudre		
Quantité de	Masse déposée 📫		
précurseur	Présence de poudre		

 $500 \mathrm{W}$

 $600 \mathrm{W}$

40 mm

2×10-3 L min-1

Conditions optimisées

P

Puissance micro-ondes : 500 W

Distance torche-substrat : 30 mm
 Débit de gaz plasmagène : 16 L.min⁻¹
 Quantité de précurseur : 3 x 10⁻⁴ L.min⁻¹

	Composition XPS	Composition par ERDA, RBS, NRA		
		Centre	À 10 mm	
Si/O	0,42	0,42	0,42	Temps de dépôt
C(at.%)	$1,5 \pm 0,7$	4,0± 0,1	$0,3\pm 0,2$	15 min
H(at.%)	х	23± 0,1	15,5±0,1	

Zone centrale poudrée même pour les conditions optimisées

Influence du temps de dépôt

Débit total : 16 L.min^{-1,} Puissance : 500 W, Distance torche-substrat : 30 mm, Débit précurseur : 3. 10⁻⁴ L.min⁻¹

Effet de la température du substrat ?

Rôle de la température de substrat

O at.% = 61

Effet de la température de substrat

Identification des vibrateurs par FTIR

22

Effet de la température de substrat

[60°C-90°C] - Films compacts, sans carbone et non poudrés

- [0°C-30°C] & [90°C-120°C]
- Germination de surface/nucléation homogène
- Similitudes structurales (FTIR) mais aussi des différences (vibrateurs Si-(CH₃)_x et H₂O aux hautes températures)

Mécanismes de dépôt différents

Modification des processus de diffusion atomique ou/et hydrodynamiques

⇒ Augmentation locale de la concentration des espèces radicalaires dans la zone de transition sur 0-30°C & 90-120°C

Effet de la température sur les premiers stades de la croissance ?

Analyse de films d'épaisseurs nanométriques

Conditions de dépôt identiques à celles utilisées pour les films micrométriques mais temps plus court (5 s)

Mécanisme de type Frank Van Der Merwe

Analyse de films d'épaisseurs nanométriques

- $[20^{\circ}C - 40^{\circ}C] \Rightarrow$ croissance bidimensionnelle

✤ Longueur de diffusion de surface relativement élevée

♥ estimée à partir de la moitié de la distance inter-îlots

Service des services en la services en la service des services en la services en la services en la service des services en la services en la service des services en la services en la

B. Cunningham et al., Appl. Phys. ,Lett. 1991 T.I. Kamins et al. J. Appl. Phys. 1997

Organisation d'objets nanométriques

Auto-organisation par patterning

Matrices de nano-indents jouant le rôle de pièges énergétiques pour les adatomes diffusant au voisinage

Caractéristiques géométriques optimales

- Substrat Si(100)/Pt (2 nm)
- Profondeur d'indents résiduelle ~250 nm & Ø~1500 nm
 Distance inter-centres = 2 μm

Organisation d'objets nanométriques

Croissance préférentielle au centre des indents

BILAN

Films transparents, sous atmosphère non contrôlée, sans ajout d'oxygène et à faible température de substrat

Films inorganiques, légèrement sur-stoechiométriques en oxygène et contenant de l'hydrogène

Sespèces carbonées efficacement éliminées par les espèces azotées et oxygénées du plasma provenant de l'air ambiant

Procédé reproductible

Vitesse de dépôt de 450 nm/min

Films de qualité équivalente à ceux obtenus par LPPECVD

BILAN

Formation de poudre évitée par :

- un contrôle de la température du substrat qui agit très probablement sur la concentration en espèces radicalaires à l'origine du dépôt à proximité du substrat

Débit total : 15 L.min⁻¹, Puissance : 500 W, Distance torche-substrat : 30 mm, Débit précurseur : 3. 10⁻⁴ L.min⁻¹

- une mise en mouvement du porte-substrat

 \Rightarrow dépôt d'épaisseur ~ 1 μ m sur 400 mm², sans poudre

Caractéristiques de la TIA Dépôt de SiO₂ **Dépôt de TIO**2 Co-dépôt TiO2/SiO2

Co-dépôt TiO₂/SiO₂ Conclusions et perspectives

Choix du précurseur

Tetraisopropoxyde de titane (TTIP)

Réactivité importante ⇒ Manipulation en boîte à gants

Conteneur et ligne de TTIP chauffés à 35°C

Optimisation des paramètres de dépôt

Influence de la distance torche-substrat

(370 W, 18 slpm, 1slpm)

Optimisation des paramètres de dépôt

♦ Paramètres « standards » de dépôt :

- Distance torche substrat : **10 mm**
- Puissance MW : 370 W
- Débit d'argon principal (plasmagène) : **18 slpm**
- Débit d'argon porteur de TTIP : **1 slpm**
- Temps de dépôt : 2 min

Vitesse de dépôt : 225 nm/min

	Composition XPS	Composition par ERDA, RBS, NRA	
		Centre	À 10 mm
Ti/O	0,47	0,46	0,47
C(at.%)	4	$3,5\pm 0,5$	$3,5 \pm 0,5$
H(at.%)	х	4± 1	15±2

33

Microstructures en fonction du rayon

200 nm

H

Microstructures en fonction du rayon

Population 2 : « Epis »

Structure

 \rightarrow amorphe

BILAN

- Films de TiO₂ adhérents et cristallisés à l'aide de la TIA
- Fenêtre de paramètres relativement restreinte pour éviter la formation de poudres
- De forts gradients de microstructure et de structure selon le rayon :
 - à cause de gradients de température ?
 - à cause de gradients d'énergie cinétique des espèces incidentes ?
 - quel est le rôle de l'écoulement des gaz ?

Ia mise en mouvement du substrat permettra t-elle d'éviter ces forts gradients ?

Caractéristiques de la TIA Dépôt de SiO₂ Dépôt de TiO₂ **Co-dépôt TiO₂/SiO₂**

Conclusions et perspectives

Pourquoi TiO₂/SiO₂ ?

TiO₂ (sous sa forme d'anatase) possède des propriétés photocatalytiques

Ces propriétés peuvent être améliorées par ajout de SiO₂ :

 qui favoriserait la croissance de TiO₂ sous forme de nanoparticules ⇒ surface spécifique plus importante,

- qui, par la présence de liaisons Si-O-Ti, offrent des sites d'adsorption plus favorables pour des groupements –OH.

Variation des débits pour le co-dépôt

Injection axiale des deux précurseurs

- TTIP thermostaté à 35°C
- HMDSO thermostaté à 7°C

Microstructures (370 W, 18 slpm, 2 min)

 $R_{Ti}\% = 0$

R_{Ti}%= 35

R_{Ti}%= 60

R_{Ti}%= 100

42

10 mm ⇒ films cristallisés (Raman, DRX)

30 mm ⇒ films amorphes (Raman, DRX)

Composition des films (FTIR)

Présence de liaisons Si-O-Ti quel que soit le co-dépôt

Composition des films (XPS, NRA, ERDA, RBS)

	%Ti/(Ti+Si) gaz	%Ti/(Ti+Si) film	Dosage des autres éléments :
	100	100	\bigcirc : 62 at 9/
À 10 mm	60	93	C : 1- 4 at.%
	35	14	H : 4 - 8 at.%
	15	3	
	0	0	

Décalage important entre les teneurs en Ti et Si injectées dans le plasma et celles mesurées dans les films

♦ - est-ce lié à l'injection des précurseurs ?

- est-ce lié aux réactions au sein du plasma ?

Activité photocatalytique des films

Suivi cinétique de la décomposition d'un colorant azoïque (orange II) en solution (10 ppm) sous UV (700 W/m²) par spectrophotométrie (suivi de la bande à 484 nm)

10 mm

R _{Ti} %	k (10⁻³ h⁻¹)
100	14 ± 2
60	41 ± 4
35	16 ± 2
15	11 ± 2

à 30 mm : k ~ 0

BILAN

- Réalisation de co-dépôts TiO₂/SiO₂ adhérents, de compositions, structures et de morphologies très différentes
- Des films cristallisés ont été obtenus à 10 mm de la torche, sans posttraitement
- Le rapport Ti/(Ti+Si) des films est très différent de la composition du mélange gazeux
 - Comment maîtriser finement la composition du film via l'injection du précurseur ?
- Pour certaines compositions, les propriétés photocatalytiques et d'hydrophilie sont supérieures à celles des dépôts TiO₂

Caractéristiques de la TIA Dépôt de SiO₂ Dépôt de TiO₂ Co-dépôt TiO₂/SiO₂ **Conclusions et perspectives**

Récapitulatif

Réalisation de dépôts d'oxyde de bonne qualité, non poudrés avec la TIA

Dans le cas de SiO₂ :

- la température de substrat est le paramètre prépondérant pour s'affranchir du phénomène de nucléation homogène

Dans le cas de TiO_2 :

- à faible distance torche-substrat, des films adhérents et cristallisés sont obtenus sans chauffer le substrat et sans post-traitement
- radialement, de forts gradients de morphologie sont observés

Le dispositif permet, par une injection simultanée de deux précurseurs, de réaliser **des co-dépôts** très différents selon les conditions de dépôt

- Avantages de la TIA pour le dépôt
- Simplicité d'utilisation : un seul mode d'injection des gaz, travail à l'air
- Selon la zone de travail (distance torche-substrat), il est possible d'obtenir une grande variété de dépôt (amorphes, cristallisés)
- Des dépôts cristallisés, dans le cas de TiO₂, peuvent être obtenus sans chauffer le substrat et sans post-traitement
- Temps de procédé courts

Inconvénients de la TIA pour le dépôt

- Fenêtre de paramètres relativement restreinte pour s'affranchir des poudres

- De forts gradients dans un plasma de petite taille

Sequences de travail se morphologie et structure aux

- Nécessité de mise en mouvement du substrat pour revêtir des surfaces relativement importantes

- Procédé réservé au dépôt d'oxydes, à moins d'un confinement de l'atmosphère ou d'un gainage efficace du plasma

Perspectives

- Poursuivre l'exploration des co-dépôts pour obtenir la maîtrise de leur composition et de leurs propriétés
- Nécessité d'avoir une meilleure connaissance de la décomposition des précurseurs en phase plasma :
 - Quelle est la répartition de ce précurseur dans le volume plasma ?
 - Quels sont les mécanismes réactionnels ?
 - Où se forme la poudre ? Dans le volume plasma ? A proximité de la surface du substrat ?
- Quelle est la température de surface du substrat ? Quels sont les gradients de température sur cette surface ?
- Quel est le rôle de l'écoulement hydrodynamique ?
- Quel est l'influence du déplacement du substrat sur tous ces facteurs ?

Remerciements

Les anciens doctorants :

- Claire Tendero, Salman Syed Asad, Xavier Landreau

Les collègues du LPGP :

- Caroline Boisse-Laporte, Philippe Leprince, Olivier Leroy

Les collègues du laboratoire :

- Nicolas Lory, Gilles Mariaux, Michel Vardelle

Les collègues de l'ENSIL :

- Olivier Baptiste, Porfirio Costa, Luc Couturaud, Yvan Quevreux, Frank Romeuf

