<u>Cours</u> Plasmas Radiofréquence Basse Pression : Des Sources aux Procédés

Emilie Despiau-Pujo

Laboratoire des Technologies de la Microélectronique (CNRS/UJF) – Grenoble

L'essor de la Microélectronique

L'essor de la Microélectronique

réalisation de structures de + en + petites

 dépôt puis gravure d'empilements de couches ultrafines avec un contrôle au niveau nanométrique

 \Rightarrow décharges plasma (**RF**) basse pression

Gravure Ionique Réactive (GIR)

GIR = bombardement ionique anisotrope + attaque chimique par les réactifs radicaux (+ formation de couches de passivation)

Plan

Section 1 : Physique des Décharges RF Basse Pression

- Plasmas faiblement ionisés et hors-équilibre
- Structure et dynamique du plasma (bulk et gaines)
- Gaines DC vs. Gaines RF

Section 2 : Sources Plasmas RF

- Sources capacitives simple et multifréquences (CCP)
- Sources inductives ou hautes-densités (ICP ou HDP)

Décharges RF basse pression : Des plasmas peu ionisés

- Plasmas : gaz ionisés
 - totalement (fusion)
 - partiellement, degré d'ionisation :

$$x_{iz} = \frac{n_i}{N_g + n_i}$$

- Trois types d'espèces :
 - électrons
 - ions (positifs et négatifs)
 - neutres (réactifs/stables)
- Décharges basse pression : faiblement ionisées (composées principalement d'espèces neutres)

 $x_{iz} \ll 1$ (~ $10^{-2} ou \, 10^{-3}$)

Décharges RF basse pression : Des plasmas hors-équilibre

- créées et entretenues électriquement dans des réacteurs
- collisions particules chargées / molécules de gaz neutre
- ⇒ dissociation du gaz en précurseurs réactifs
- ⇒ ionisation des neutres entretient la décharge
- parois sur lesquelles les pertes en surface sont importantes

Plasmas Hors-Equilibre

- électrons: absorbent puissance EM et faiblement couplés avec particules lourdes (me<<mi,)
- important couplage énergétique entre ions, neutres et parois du réacteur
- les e- ne sont **pas en équilibre thermodynamique** avec les ions et les neutres

T_e (1-10eV) >> T_i, T_n (~ 300-1000K)

Comment allumer/entretenir la décharge ?

Les décharges basse pression sont créées et entretenues **électriquement** de sorte que les esoient accélérés et puissent **ioniser** les atomes et molécules neutres du gaz.

Le domaine Radiofréquence (13.56 MHz)

- champ électrique: même force (qE) sur les particules chargées positives et négatives
- accélération γ très différente pour **ions** et **électrons** : $\gamma_e = -eE/me >> \gamma_{ion} = eE/Mi$ *e.g. plasma d'hydrogène : \gamma e / \gamma i = Mi / me = 1836 !*

$(\frac{n_i e^2}{m_i \varepsilon_0})^{1/2}$ MHz domaine rf GHz W_{pe} W_{pe} W_{pe} $(\frac{n_e e^2}{m_e \varepsilon_0})^{1/2}$ $(\frac{n_e e^2}{m_e \varepsilon_0})^{1/2}$

 \rightarrow mobilité électronique >> mobilité ionique

Domaine RF (1 < f < 500MHz)

- Electrons : peuvent suivre les variations instantanées du champ électrique RF
- Ions : répondent uniquement au champ électrique RF moyen (cf. inertie)

Interface plasma/parois : Les gaines de charge d'espace

• Une décharge existe si elle demeure quasi-neutre :

$ne = ni = n_0$

 \Rightarrow flux d'e- et ions doivent être égaux partout dans le plasma, <u>même au niveau des parois</u> :

$$\Gamma_{e} = \frac{1}{4} n_{0} \sqrt{\frac{8kT_{e}}{\pi m_{e}}} \quad \text{doit être égal à} \quad \Gamma_{i} = \frac{1}{4} n_{0} \sqrt{\frac{8kT_{i}}{\pi M_{i}}}$$

Mais me << Mi and Te >> Ti $\Rightarrow \Gamma_e >> \Gamma_i$

<u>A l'allumage de la décharge :</u> électrons (rapides) non confinés et rapidement perdus aux parois, qui vont donc **se polariser négativement**

Interface plasma/parois : Les gaines de charge d'espace

• Une décharge existe si elle demeure quasi-neutre :

 $ne = ni = n_0$

 \Rightarrow flux d'e- et ions doivent être égaux partout dans le plasma, <u>même au niveau des parois</u> :

$$\Gamma_e = \frac{1}{4} n_0 \sqrt{\frac{8kT_e}{\pi m_e}}$$
 doit être égal à $\Gamma_i = \frac{1}{4} n_0 \sqrt{\frac{8kT_i}{\pi M_i}}$

Mais me << Mi and Te >> Ti \Rightarrow $\Gamma e >> \Gamma i$

<u>A l'allumage de la décharge :</u> électrons (rapides) non confinés et rapidement perdus aux parois, qui vont donc **se polariser négativement**

⇒ création d'une zone de charge d'espace positive (la gaine) à l'interface avec les parois tq $\Gamma_e = \Gamma_i$

Interface plasma/parois : Les gaines de charge d'espace

- Gaines: petites (≈100µm–1cm) zones et dans lesquelles des champs électriques importants peuvent se développer
- \Rightarrow électrons (ions -) confinés au centre du plasma
- \Rightarrow ions positifs accélérés vers les surfaces
- Gaines: atout majeur pour traitement de matériaux
- ⇒ conversion énergie électrique en énergie cinétique (dirigée) transférée aux ions atteignant les surfaces
- \Rightarrow énergie de bombardement ionique (**de 1eV à 500eV**) peut être contrôlée via le potentiel de gaine Vs

Décharges basse pression : Traitement des matériaux

Gaines DC vs Gaines RF : Structure et caractéristiques

Gaines DC : Flux d'ions aux parois ≡ Critère de Bohm

• Une gaine de charge d'espace positive peut se former seulement si les ions pénètrent dans la gaine avec une vitesse dirigée u_B très supérieure à leur vitesse thermique

• Formation d'une **pré-gaine** : les ions arrivent à la frontière plasma-gaine avec une **vitesse dirigée** $kT_e/2$ (faible champ E dans pré-gaine quasineutre accélère les ions vers la gaine)

⇒ les ions pénètrent dans la gaine à la vitesse de Bohm (dirigée) : $u_B = (kTe/M)^{1/2}$ ⇒ le flux d'ions à l'entrée de la gaine est : $\Gamma_i = n_s u_B$

Gaines DC : Distribution de potentiel et de densités

Gaines DC : Conservation de l'énergie dans la gaine

- Les ions positifs sont accélérés par le **potentiel de gaine V**_s et gagnent de l'énergie
- En supposant les ions au repos à l'entrée de la gaine, l'énergie cinétique ionique E_i et la vitesse u_i aux parois sont déduites de la conservation de l'énergie totale (basse pression => pas de collisions)

Quand il atteint les parois: l'ion a gagné une énergie $E_i = eV_s$: la vitesse de l'ion est $u_i = (2eV_s/M_i)^{1/2}$

Gaines DC : Potentiel plasma pour les gaines faible tension

• La chute de potentiel dans la gaine ($V_p - V_{wall}$) s'ajuste de manière à confiner assez d'électrons dans le plasma pour que les flux d'ions et d'électrons perdus aux parois soient égaux (permettant de maintenir la quasi-neutralité) : $\Gamma_i = \Gamma_e$

Exemple: plasma Ar (parois à la masse)

 \Rightarrow le potentiel plasma est V_p \approx 5.2 T_e \approx 15 V

 \Rightarrow e- avec énergie < 15 eV sont confinés au centre du plasma

 \Rightarrow l'énergie des ions bombardant les parois est $E_i = 15 \text{ eV}$

Gaines DC : Résumé

19

le plasma tend à perdre + d'e⁻ que d'ions positifs aux surfaces : pour maintenir sa quasineutralité le plasma est protégé des surfaces par des gaines de charge d'espace positives.

• Grâce aux gaines les lents e- sont confinés au centre du plasma tandis que les ions positifs sont accélérés vers les surfaces/parois.

• La barrière de potentiel entre le plasma et les surfaces s'ajuste de sorte que : $\Gamma_e = \Gamma_i$

- Pour un plasma d'**argon** avec parois à la masse le potentiel plasma est $V_p = 5.2 T_e = 15V$ \Rightarrow l'énergie des ions bombardant les surfaces est donc $E_i = 15 \text{ eV}$
- Le flux d'ions bombardant les surfaces/substrats est = au flux de Bohm : $\Gamma_I = 0.6 n_o u_B$ où n_o est la densité ionique au centre du plasma

Le potentiel électrique du plasma V_p doit toujours être supérieur au potentiel de n'importe quelle surface en contact avec le plasma pour confiner ses électrons à grande mobilité Dans beaucoup de cas, les substrats devant être gravés sont recouverts de couches isolantes (oxydes, résines photosensibles, etc.)

• Il est donc généralement **impossible** d'utiliser :

20

- des décharges DC pour la gravure
- des tensions DC pour accélérer les ions vers le substrat

• Les **tensions RF** sont donc utilisées pour **allumer le plasma** (cf. décharges capacitives) et pour **accélérer les ions** vers le wafer grâce aux capacités de rectification de potentiel des gaines (**tension d'auto-polarisation**)

• Ainsi, la tension de gaine oscille en permanence à la fréquence d'excitation RF

Gaines RF et tension d'auto-polarisation (1)

Gaines nécessaires pour confiner les électrons

21

⇒ chute de potentiel à travers la gaine ($V_s = V_p - V_{wall}$) doit toujours être **positive**. ⇒ si le potentiel de gaine **oscille** avec une amplitude V_{rf} , une **tension DC** $V_{DC} \approx V_{rf}$ **doit se développer** dans la gaine pour empêcher la tension de gaine de devenir négative.

Gaines RF et tension d'auto-polarisation (1)

Gaines nécessaires pour confiner les électrons

22

 \Rightarrow chute de potentiel à travers la gaine ($V_s = V_p - V_{wall}$) doit toujours être **positive**.

⇒ si le potentiel de gaine oscille avec une amplitude V_{rf} , une tension DC $V_{DC} \approx V_{rf}$ doit se développer dans la gaine pour empêcher la tension de gaine de devenir négative.

Tension de gaine = b<u>arrière</u> que les e- doivent passer pour atteindre la surface.

⇒ flux d'e- atteignant les parois va être modulé dans le temps et la valeur de V_{DC} est telle que $<\Gamma_e> = \Gamma_i$ où $<\Gamma_e>$ est le flux d'e- moyenné sur un cycle RF.

La gaine rectifie les potentiels RF en potentiels DC \Rightarrow les ions répondent à la valeur moyenne du potentiel de gaine (V_{DC}) et peuvent être accélérés à forte énergie. V_{DC} est appelé la tension d'auto-polarisation et est noté V_{bias} dans la suite.

Gaines RF et tension d'auto-polarisation (2)

Exemple: Une petite électrode à laquelle on applique une tension V_{RF} à travers une **capacité de blocage** en série est immergée dans un plasma au potentiel V_p

acquièrent une **énergie eV**bias.

Gaines RF et tension d'auto-polarisation (3)

24

 \Rightarrow énergie des ions bombardant l'électrode $E_i = eV_{bias}$ contrôlable via la tension d'excitation V_{RF} \Rightarrow <u>méthode de contrôle de l'énergie des ions bombardant les substrats dans réacteurs ICP</u>

Epaisseur et capacité de la gaine

• quand V_s >>T_e l'épaisseur de la gaine s(cm) est :

$$s = \lambda_D \left(\frac{e V_s}{k T_e}\right)^{3/4} \approx 500 \frac{V^{3/4}}{\sqrt{n_e T_e^{1/4}}}$$

 \Rightarrow épaisses gaines (1cm) observées dans plasmas basse-densité (LDP)

 \Rightarrow bien + fines (100s µm) dans plasmas hautes densités (HDP)

• Dans gaines haute tension, pas d'électrons dans la gaine pendant la majeure partie du cycle RF (e- atteignent l'électrode par « pulses » quand la gaine s'effondre) \Rightarrow courant dans la gaine dominé par un courant de déplacement $J_D = \varepsilon_0 dE/dt$ \Rightarrow gaine se comporte comme un condensateur de capacité $C_s = \varepsilon_0 A/s$ (A surface de la gaine)

Les gaines rectifient le potentiel RF en potentiel DC

⇒ si tension V_{rf} imposée dans la gaine, une **tension d'auto-polarisation V**_{bias} ≈ V_{rf} apparait dans la gaine pour empêcher la perte excessive d'électrons à forte mobilité : $\Gamma_i = <\Gamma_e >$

<u>A cause de leur inertie, les ions répondent uniquement à la valeur moyenne du potentiel</u>
 ⇒ ions accélérés par la tension d'auto-polarisation et peuvent acquérir de fortes énergies
 ⇒ sans collisions dans la gaine, les ions gagnent une énergie cinétique eV_{bias} en traversant la gaine : c'est la clé pour contrôler l'énergie des ions bombardant le substrat

- Le flux d'ions atteignant les surfaces :
- \Rightarrow constant dans le temps
- \Rightarrow donné par le **flux de Bohm** : $\Gamma_i = 0.6n_o u_B$

• Au contraire, les **électrons** sont perdus aux parois uniquement **pendant une petite partie du cycle** RF (quand la barrière de potentiel passe par un minimum).

• Aux fréquences typiques (13 MHz) et à faible densité ionique, la gaine RF se comporte essentiellement comme **un condensateur**.

Plan

Section 1 : Physique des Décharges RF Basse Pression

- Plasmas faiblement ionisés et hors-équilibre
- Structure et dynamique du plasma (bulk et gaines)
- Gaines DC vs. Gaines RF

Section 2 : Sources Plasmas RF

- Sources capacitives simple et multifréquences (CCP)
- Sources Inductives ou Hautes-densités (ICP ou HDP)

Choisir son équipement plasma

• How about inductive? (figure published in 1991)

Sources plasma RF pour la Micro-électronique (1)

- différenciées par mode de couplage de la puissance électrique (champs EM RF) au plasma
- forme et intensité des champs EM RF (donc efficacité du chauffage des e-) dépend de la structure d'excitation

Plasmas à Couplage Capacitif (CCP) Faibles densités (10⁹-10¹⁰ cm⁻³) Puissance couplée capacitivement au plasma Faible Γ_i et fortes E_i

Plasmas à Couplage Inductif (ICP ou HDP)

<u>Hautes densités</u> $(10^{10}-10^{12} \text{ cm}^{-3})$ Puissance couplée inductivement au plasma Fort Γ_i et basses E_i

Sources plasma RF pour la Micro-électronique (2)

Sources/Réacteurs plasma : Excitation RF

• Tensions RF utilisées :

- i) pour créer le plasma (dans décharges capacitives)
- ii) et/ou pour accélérer les ions vers le substrat grâce aux propriétés de rectification de potentiel des gaines (tension d'auto-polarisation)

• La puissance est couplée au substrat via une **capacité de blocage** placée en série avec le générateur. Celui-ci bloque tout courant DC et assure que le courant d'ions positifs soit égal au courant électronique (moyenné dans le temps) : $\langle \Gamma_e \rangle = \Gamma_i$

• La capacité peut se charger négativement et une **tension d'auto-polarisation** peut se développer permettant ainsi la gravure de substrats isolants

• 13.56 MHz et ses harmoniques sont les fréquences typiquement utilisées dans les applications industrielles

Plasmas à Couplage Capacitif (CCP)

Réacteur à couplage capacitif basse densité (CCP)

- premiers réacteurs utilisés pour la gravure ionique réactive dans les années 70-80
- 2 plaques métalliques polarisées (électrodes) par tension RF et alimentées par un générateur simple fréquence (13.56 MHz)
- substrat placé sur l'électrode polarisée (<100mT)

L'amplitude de la tension RF entre les 2 plaques (électrodes) détermine à la fois l'énergie et le flux des ions bombardant le substrat...

Réacteur à couplage capacitif basse densité (CCP)

On considère un circuit RF équivalent à un réacteur à couplage capacitif :

H1: le plasma est un conducteur parfait

H2 : les impédances de gaine ($Z_E \& Z_G$) sont capacitives ($V_p(t) \rightarrow$ tension sinusoïdale)

• La tension RF V_{rf} appliquée à l'électrode doit être partagée entre les 2 gaines : $V_{rf} = V_E + V_p$

$$\frac{V_p(t)}{V_{rf}(t)} = \frac{A_E}{A_G + A_E}$$

• $Z = 1/(jC\omega) \sim s/(A\omega)$ où s est l'épaisseur de la gaine et A la surface de l'électrode

Réacteur Plasma Capacitif : 2 cas

La surface de **l'électrode de puissance** A_E peut être très petite devant la surface des **parois** à la masse A_G (réacteur asymétrique) ou comparable (réacteur symétrique) \Rightarrow comportement de V_p complètement différent

CCP : Réacteur asymétrique (1)

36

Valeur moyenne tensions inter-électrodes :

• Modulation RF de $V_p \rightarrow 0$ e.g. $\langle V_p \rangle_t \approx 15$ V (gaine faible tension faisant face aux parois à la masse)

• $V_E >> V_p$

 \Rightarrow forte modulation de la tension RF dans la gaine faisant face à l'électrode de puissance

 \Rightarrow forte tension d'auto-polarisation

 \Rightarrow la capacité se charge à **-Vbias** \approx **Vrf**

petite électrode de puissance bombardée par ions énergétiques w/ Ei ≈ V_{bias} ≈ V_{rf}
parois du réacteur bombardées par ions de faible énergie ≈ V_p= 15 eV

CCP : Réacteur asymétrique (2)

A tout instant t, $V_p(t)$ demeure supérieur au potentiel de surface le + élevé en contact avec le plasma

Réacteur CCP asymétrique : Flux d'ions et d'e- vers l'électrode

Réacteur CCP asymétrique : Flux d'ions et d'e- vers l'électrode

CCP : Réacteur symétrique

• Même surface d'électrodes : $A_E = A_G$

• Même capacité pour les 2 électrodes $\Rightarrow C_E = C_G \Rightarrow V_E = V_p(t) = V_{rf}/2$

 \Rightarrow Forte modulation de V_p / parois à la masse.

 \Rightarrow Forte **tension d'auto-polarisation** dans les 2 gaines mais ici la capacité ne se charge pas négativement : c'est la valeur moyenne du **potentiel plasma V**_p qui s'élève.

⇒ 2 électrodes bombardées par ions énergétiques alors qu'une seule alimentée par la RF !

Réacteurs CCP Symétrique et Asymétrique: Résumé

• Dans un réacteur asymétrique, la + petite électrode est bombardée par des ions énergétiques (énergie $eV_{bias} \approx eV_{rf}$) \Rightarrow l'énergie des ions bombardant le substrat peut être contrôlée par la tensions RF V_{rf} . Les parois du réacteur sont bombardées par des ions de faible énergie (V_p).

• Dans un réacteur symétrique, il n'y a pas d'auto-polarisation de la capacité mais la valeur moyenne du potentiel plasma V_p est élevée : à la fois le substrat et l'électrode opposée sont bombardés par des ions énergétiques (énergie $eV_{rf}/2$).

CCP à 13.56 MHz : Limitations

Dans un réacteur asymétrique la tension d'auto-polarisation peut être si haute que la majeure partie de la puissance RF est absorbée par les ions et non pas par les électrons :

$$P_{rf} \approx I_i \times V_{bias} = Ae\Gamma_{ion}V_{bias} \implies \Gamma_{ion} \approx \frac{P_{rf}}{AeV_{bias}}$$

1) V_{bias} est grand $\Rightarrow \Gamma_{\text{ion}} (n_0)$ est petit : CCP = plasma basse densité (10⁹-10¹⁰ cm⁻³)

- 2) Si P_{rf} augmente, à la fois n_o (flux d'ions) et V_{bias} (énergie ionique) augmentent \Rightarrow impossible de contrôler indépendamment le flux et l'énergie des ions dans un CCP
- 3) CCP peuvent fonctionner uniquement à **relativement haute pression** (> 20 mTorr) où libre parcours moyen des e- petit devant la distance inter-électrode (typiquement 2-5 cm)
- \Rightarrow gaine collisionelle = perte de directionalité des ions

42

⇒ Une amélioration des CCP était requise...

⇒ CCP double-fréquence ou multi-fréquences

Influence de la fréquence (1) : Tension de gaine et E_{ion}

• Puissance RF P_{rf} couplée capacitivement au plasma via les gaines : $Z_s = 1/c\omega = V_{rf} / I_{rf}$

 \Rightarrow quand ω augmente à P_{rf} constant, V_{rf} décroît \Rightarrow IV_{bias} I décroît aussi

Augmenter la fréquence d'excitation à puissance constante ⇒ **diminution de l'énergie ionique**

Influence de la fréquence (2) : Densité électronique n_e et Γ_{ion}

PIC Modèle global inhomogène 10¹¹ Fluide n_e (cm⁻³) 10¹⁰ Argon 150 mTorr V_ = 200 V Gap = 3 cm10⁹ 14 27 41 54 68 95 108 81 0 Fréquence (MHz)

A Perret et al. (150 mTorr / V_{rf} = cte = 200V)

Relation entre tension RF et **puissance** P_e absorbée par les électrons :

 $P_e \propto \omega^2 V_{rf}$

 \Rightarrow à V_{rf} constant : $n_e \propto \omega^2$

Augmenter la fréquence d'excitation à V_{RF} constante :

 \Rightarrow augmentation de la densité électronique

44

 \Rightarrow augmentation du flux ionique bombardant le substrat

Influence de la fréquence (3) : Energie & Flux ionique

A. Perret et al., Appl. Phys. Lett 86 (2005) 021501

 A basse fréquence : faible flux d'ions fortes énergies ioniques (> 100 eV)

• A haute fréquence : fort flux ionique

faibles énergies ioniques (< 100 eV)

Peut-on contrôler **indépendamment le flux et l'énergie des ions** en utilisant une excitation multifréquence ?

Réacteurs double-fréquence

But: contrôler indépendamment le flux et l'énergie des ions

Réacteurs double-fréquence : Flux et énergie des ions

 $f_{HF} = 60 \text{ MHz} / f_{LF} = 2 \text{ MHz}$ $f_{HF} = 60 \text{ MHz} / f_{LF} = 2 \text{ MHz}$ $f_{HF} = 60 \text{ MHz} / f_{LF} = 2 \text{ MHz}$ $f_{HF} = 00 \text{ V}_{I} = 900 \text{ V}_{I} = 900 \text{ V}_{I} = 900 \text{ V}_{I} = 1200 \text{ V}_{I} = 1200 \text{ V}_{I} = 1800 \text{$

47

• Contrôle indépendant du flux et de l'énergie des ions jamais mais le découplage s'améliore quand $f_{\rm HF}/f_{\rm LF}$ augmente.

• Fixer V₁ permet de conserver une énergie ionique quasi-constante tout en faisant varier le flux d'ions par un facteur 4

Augmentation du flux d'ions avec P_{HF} indépendamment de V_{LF}

Distribution en énergie des ions (IEDF) bombardant l'électrode

• La fonction de distribution en énergie (**IEDF**) est un paramètre crucial pour la gravure plasma.

- Jusqu'ici on a supposé que :
- •les ions répondaient uniquement à la valeur moyenne de la tension de gaine
- •tous les ions arrivaient sur le substrat avec la même énergie eV_{bias}
- ⇒ correct **uniquement à haute-fréquence** et pour des gaines **non collisionelles**

La forme de l'IEDF est contrôlée par :

1) le **temps de transit** de l'ion dans la gaine

2) les collisions dans la gaine (e.g. pression de travail)

CCP : IEDF et Temps de transit des ions dans la gaine

• Temps de transit τ_{ion} = temps nécessaire à un ion pour traverser la gaine $\Rightarrow \tau_{ion}$ dépend de l'épaisseur de la gaine et de la masse de l'ion

• Ratio à considérer : rapport entre τ_{ion} et la période du signal RF (T = 1/f)

• <u>Si $\tau_{ion} >> T$:</u>

•tous les ions ont ~ la même énergie E_{ion} égale à la valeur moyenne de la tension de gaine V_s •les ions tendent à ignorer la composante rf de le tension de gaine

• <u>Si $\tau_{ion} \ll T$:</u>

• E_{ion} est déterminée par la valeur **instantanée de V**_s quand l'ion pénètre dans la gaine •large **IED** puisque les ions expériencent des tensions entre ~ 0 et $2V_{rf}$.

Facteurs importants pour déterminer ce rapport :

- fréquence RF
- épaisseur de la gaine
- masse de l'ion

CCP : Influence de la fréquence sur l'IEDF

A basse fréquence : $E_{ion} \max + \acute{e}lev\acute{e}$ car certains ions expériencent la tension RF complète $2V_{rf}$ A haute fréquence : tous les ions ont la même énergie $V_{bias} \sim V_{rf}$

Fréquence RF et IEDF : Résumé

• forme **IEDF** influencée par la **fréquence RF** et le **temps de transit** des ions à travers la gaine

• <u>A haute-fréquence (ou ions lourds)</u>: tous les ions ont approximativement la même énergie : $V_{bias} \approx V_{rf.}$

- <u>A basse fréquence</u>: des ions à la fois **faiblement et fortement énergétiques** bombardent le substrat simultanément
- $\Rightarrow E_{ion} \text{ max atteint} : 2xV_{rf} (2x E_i \text{ pour la même tension de bias à haute fréquence})$ $\Rightarrow utile quand hautes E_{ion} \text{ requises (e.g. gravure oxydes)}$

Ces conclusions s'appliquent aussi aux sources hautedensité (section suivante), dans lesquelles l'IEDF au niveau du substrat est aussi contrôlée par la fréquence du générateur utilisé pour auto-polariser le substrat.

Plasmas à Couplage Inductif (ICP)

Réacteurs ICP : 2 générateurs

53

<u>Pourquoi des plasmas ICP ou HDP ? Besoin de :</u> **faibles E**_{ion} (cf. sélectivité et dommages surfaciques en gravure)
contrôle indépendant du flux Γ_{ion} et de l'énergie E_{ion}
gaines **basse pression** (<10 mTorr) pour directionalité des ions

Principe

•Plasma généré par couplage de la puissance RF au plasma via des antennes

•densité e- (donc flux ions sur substrat) contrôlée par puissance RF injectée dans le plasma

•E_{ion} contrôlée en utilisant un 2d générateur RF couplé capacitivement au substrat

Réacteurs ICP: Génération/Entretien du plasma

54

• courant RF i_{RF} circulant dans antenne externe \Rightarrow champ magnétique B induit dans le gaz [Maxwell-Ampère : $\overrightarrow{rot} \overrightarrow{B} = \mu_0 \overrightarrow{j}$]

- variation temporelle du champ B \Rightarrow champ électrique azimutal $\mathbf{E}_{\theta} (+ \mathbf{J}_{\theta})$ dans plasma [Maxwell-Faraday : $\overrightarrow{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$]
- onde EM absorbée dans le plasma sur δ=c/w_{pe} à basse pression (épaisseur de peau)
 δ ≤ (R,l) ⇒ couplage puissance efficace
 ⇒ densités plasma élevées (10¹⁰-10¹²cm⁻³)
- Gaines fines : E_{ion} faibles (~20eV)
- \Rightarrow porte-substrat polarisé par alimentation indépendante

Réacteurs ICP: Antennes

Réacteurs ICP: 2 régimes de fonctionnement

Régime basse puissance dit « capacitif » (E)
 Régime haute puissance dit « inductif » (H)

Transition E-H relativement abrupte :

- stable (mais possible hystérésis) en gaz électropositif
- peut être instable en gaz électronégatif

Mode Capacitif (E)

- Faible $P_{RF}(<100W) \Rightarrow$ faibles n_e
- Tension RF aux extrémités de la bobine
- \Rightarrow champ électrostatique entre bobine & parois
- \Rightarrow chauffage e- de type capacitif : $P_{abs} \alpha I_{RF}^2/ne$

Mode Inductif (H)

- Forte P_{RF} (>100W) \Rightarrow fortes n_e
- onde EM évanescente dans plasma sur $\delta = c/w_{pe}$
- \Rightarrow régime basse densité $P_{abs} \alpha I_{RF}^2$ ne
- \Rightarrow régime haute densité $P_{abs} \alpha I_{RF}^{2}/\sqrt{(ne)}$

Réacteurs ICP: Régime inductif (« normal »)

• pas d'électrode de puissance immergée dans le plasma \Rightarrow tension de gaine non modulée et potentiel plasma faible : $V_p \approx 5Te$

Conséquences

 puissance RF absorbée principalement par les e- (et non par les ions)
 ⇒ très hautes densités plasma / CCP

Pour P>100W, relation linéaire entre la puissance RF injectée dans le plasma et la densité électronique n_o (et donc le flux d'ions):

 $\mathbf{P}_{abs} \propto \mathbf{n}_{o}$

Réacteurs ICP: Porte-substrat polarisé /couplé capacitivement

- Couplage inductif : plasma dense à faible p et courant ionique I_i au substrat controlé par P_{ind}
- Potentiel plasma faible (≈ 15 V) et non modulé

58

- Tension V_{rf} appliquée sur électrode couplée capacitivement
- \Rightarrow tension d'auto-polarisation V_{bias}
- \Rightarrow énergie ions bombardant l'électrode $\mathbf{E}_{ion} = \mathbf{eV}_{bias}$ contrôlable par \mathbf{V}_{rf} indépendamment de Γ_{ion}

Limitation: Parce que I_i est fort (20 mA.cm⁻²), V_{bias} maintenu faible et $\underline{\mathbf{E}_{\underline{i}}}$ faible dans ICP Exemple: $I_i = 20 \text{ mA.cm}^2$, wafer 300 cm² et $P_{bias} = 500 \text{ W} \Rightarrow V_{bias} = \overline{80} \text{ V seulement}$

Plasmas à Couplage Inductif (ICP)

59

• Hautes densités plasma atteintes sans électrode haute tension en contact avec le plasma

• Pas de **pulvérisation** des parois/électrode si **pas de couplage capacitif** plasma/antenne $\Rightarrow V_{rf} > 1000V$ sur antenne : même avec toit diélectrique épais, une partie de la RF est couplée capacitivement au plasma \Rightarrow acur la complexe mensaite éliminé en utilizent des "housiliere" électrostatiques (Foredau chielde)

 \Rightarrow couplage parasite éliminé en utilisant des "boucliers" électrostatiques (Faraday shields)

Mais l'allumage du plasma requiert du couplage capacitif pour craquer le gaz
 ⇒ dans la plupart des systèmes un couplage capacitif significatif antenne/plasma existe et les
 toits du réacteur sont pulvérisés-gravés relâchant des impuretés dans le plasma
 e.g. atomes O et Si avec toits SiO₂, Al avec toit en céramique

Flux / Energie ionique: Possibilités en Gravure Ionique Réactive

Merci de votre attention